11 марта 2011 года в восточной части Японии случилось землетрясение, которое, по мнению ученых, стало для страны одним из сильнейших за всю историю наблюдений. Вслед за ним на территорию Японии обрушилось цунами, высота волн которого в некоторых местах достигала 40 метров. Огромный поток воды залил большую территорию, и в том числе несколько расположенных на ней атомных станций. Стихийное бедствие привело к развитию тяжелой аварии на японской АЭС “Фукусима-1” (Fukushima Daiichi).

Эта авария стала третьей крупнейшей на АЭС в мире после событий на атомной станции “Три Майл Айленд” в США и Чернобыльской АЭС в СССР. Институт проблем безопасного развития атомной энергетики (ИБРАЭ) РАН с первых часов развития драматических событий в Японии подготовил прогноз развития ситуации на АЭС “Фукусима-1” в долгосрочной перспективе, который в результате полностью совпал с реальностью.

Первый заместитель директора ИБРАЭ, ведущий эксперт по тяжелым авариям на АЭС Рафаэль Варназович Арутюнян к печальной годовщине данных событий развеял для РИА “Новости” пять главных мифов вокруг аварии на японской атомной станции.

Миф первый: Даже в Японии, высокотехнологичной стране, являющейся законодателем мод в культуре управления процессами, не удалось предотвратить аварию на атомной станции. А это значит, что атомная энергетика крайне опасна, потому что она ущербна в своей неуправляемости.   Реальность: На самом деле ситуация на АЭС “Фукусима-1” жизненная и очень простая. Японцы не учли в проекте этой атомной станции то, что в мире давно является стандартом безопасности. Проект Fukushima Daiichi изначально содержал в себе ошибки и не какие-то сложные, а очень простые – в проекте не было предусмотрено воздействие цунами на станцию. А ведь цунами очень характерно для Японии. Странным является то, что японцы на самом деле задолго до развития этих драматических событий реально обсуждали возникновение проблемы залива водой площадки станции, и компания-оператор АЭС TEPCO даже пересматривала проект с учетом цунами. Но они почему-то ограничили себя рассмотрением предельной высоты волны в 5,7 метра. И никакой научной базы под эту цифру, насколько мне известно, так и не подвели. Как мы помним, в результате волна пришла гораздо большей высоты. Не было ничего сложного и в подготовке площадки АЭС к такому возможному развитию событий. Ведь в данном случае речь идет не о глубоких разработках сложнейших систем безопасности, а об элементарных системах, обеспечивающих безопасность. К примеру, надо было поднять дизельные генераторы повыше, чтобы они не заливались водой. Вопрос в том, как в Японии, к которой мы относимся уважительно и воспринимаем их достижения в научно-технической области очень серьезно, могли столь небрежно относиться к обеспечению безопасности АЭС? Я думаю, что тут не нужно искать глубоких корней и причин. Мне кажется, похожее произошло в СССР после аварии на американской АЭС “Три Майл Айленд” в 1979 году. В Советском Союзе тогда стали говорить, что американская авария случилась, потому что у США и операторы были слабо подготовлены, и техника несовершенна. В итоге в СССР не выучили уроки аварии на АЭС в США, и через семь лет случилась Чернобыльская АЭС. То же самое произошло и в Японии, они не выучили уроки аварий, произошедших в мире ранее, в том числе и на Чернобыльской АЭС. У японцев вообще не было готовности к тяжелым авариям, и поэтому в ходе своей аварии они опаздывали в реагировании на развитие событий почти на каждом шагу.

Миф второй: На атомной станции системы защиты были настолько неадекватными, что привели к взрыву реакторов.   Реальность: Самое удивительное в том, что даже на таком старом проекте АЭС, а проекту 40 лет, системы безопасности сработали в штатном режиме и заглушили реакторы во время землетрясения! Главное требование к безопасной эксплуатации атомной станции звучит так: в любом случае цепная реакция в реакторах должна быть остановлена. На японской станции это, собственно, и произошло: стержни поглотители системы защиты в момент землетрясения вошли в активную зону реактора, и цепная реакция прекратилась. Повторю, даже в условиях сильнейшего землетрясения такая старая станция своевременно прекратила работу благодаря сработавшей системе аварийной остановки. Есть еще одна функция безопасности, которая должна обязательно действовать, – нужно обеспечить охлаждение активной зоны реактора. Эта задача чисто технически не требует каких-то особых усилий и “семи пядей во лбу” у персонала, ведь все необходимые системы на станции предусмотрены. Если в условиях землетрясения внешнее электропитание пропадает, то для обеспечения работы системы охлаждения станции необходимо иметь дизельные генераторы, предназначенные для обеспечения охлаждения активных зон и их полного расхолаживания. Что же в реальности произошло? Как я уже говорил выше, в рамках проекта не была предусмотрена защита от воздействия на станцию цунами, причем не какой-то безумной высоты волны, а выше пять-семь метров. И это притом что АЭС стоит на берегу океана! В результате пришедшая волна цунами затопила дизельные генераторы, которые были расположены на каждом из энергоблоков внизу, в заливаемой водой части. После выхода из строя дизельных генераторов АЭС они не смогли обеспечить простую функцию охлаждения реакторов и бассейнов выдержки топлива. В результате произошел перегрев и расплавление активных зон, случилась так называемая пароциркониевая реакция, в результате которой выделяется водород. Этот водород скапливался в помещениях, где расположены реакторы, взрывался, разрушал здания, и дальше шел выброс радиоактивности во внешнюю среду. То есть взрывались не реакторы, а скапливающийся в зданиях энергоблоков водород как крайне легко воспламеняющийся газ. Сами реакторы, конечно же, не взрывались.

Инфографика: РИА Новости

В качестве распространенного топлива для атомных электростанций применяется уран. Реакция деления осуществляется в основном блоке атомной электростанции – ядерном реакторе.  Наиболее pаспpостpанен pеактоp на обогащенном уpане, в котоpом и теплоносителем, и замедлителем является обычная, или “легкая”, вода. Реактор второго типа – газоохлаждаемый – с графитовым замедлителем. В реакторе третьего типа и теплоносителем, и замедлителем является тяжелая вода, а топливом природный уран. Кроме того существует реактор на быстрых нейтронах.  Безопасность и экологичность работы реактора обеспечиваются жестким выполнением регламента – специальных правил эксплуатации и большим количеством контрольного оборудования, которое предназначено для эффективного управления реактором.   Японские специалисты пытались бороться с аварией совсем не так, как следовало бы в данном случае, они действовали неадекватно. Например, нужно было вентилировать контайнтмент, где собирался водород, чтобы выпустить газ наружу, и тогда бы не было взрывов. Они все это делали с задержками. Долго думали, долго выполняли. Взрывов зданий точно можно было избежать. Японцы также оказались не готовыми и к аварийной подаче воды для охлаждения реакторов и бассейнов выдержки облученного ядерного топлива (ОЯТ).

Миф третий: Развитие аварии на любой атомной станции таково, что невозможно при любом уровне аварии повернуть ее вспять.   Реальность: На самом деле, если вы посмотрите историю развития японской аварии, то обратите внимание, что почему-то почти совсем не упоминаются пятый и шестой энергоблоки станции. Все дело в том, что именно на этих блоках АЭС “Фукусима-1” сохранился один дизель-генератор, и в условиях отсутствия внешнего электропитания с его помощью удалось обеспечить охлаждение двух реакторов и двух бассейнов ОЯТ. И на этих блоках никакой тяжелой аварии не произошло. То есть если бы японцы вовремя предусмотрели меры по подаче дополнительного питания подачи воды не по стандартной схеме, можно было остановить эту аварию на всей АЭС. И на самой ранней стадии. Я считаю, что причина любой аварии на АЭС – человеческий фактор. В атомной энергетике нет технических особенностей, не позволяющих решить любые задачи в сфере безопасности. И если авария все-таки случилась, то по причине того, что либо был людьми недоработан проект АЭС, либо отсутствовали технические средства готовности к реагированию на запроектные события, либо персонал не был подготовлен к действиям в подобных ситуациях. Конечно, станция, построенная несколько десятилетий назад, могла по изначальному проекту не отвечать современным требованиям безопасности, но ведь есть же процесс модернизации, и японцам надо было, конечно же, в полной мере использовать его возможности.

Миф четвертый: Авария на японской АЭС из-за близости станции к океану и сбросов в него радиационной воды привела к колоссальным негативным последствиям для Японии и для мира в целом.   Реальность: Как только “Фукусиму” отнесли к седьмому уровню по международной шкале событий INES, то у мировой общественности сразу возникла аналогия с аварией в Чернобыле, а значит появилась убежденность, что “Фукусима” – катастрофа. Первое, что хочу отметить, и пусть это прозвучит неожиданно резко, но честно, Чернобыль – катастрофа только в головах общественности. Потому что реальные последствия аварии на ЧАЭС известны, и Всемирной организации здравоохранения, и МАГАТЭ, и ООН, и эти последствия никак нельзя отнести к катастрофическим. С точки зрения последствий для человека в аварии на ЧАЭС – 28 людей получили огромные дозы радиационного облучения и умерли. Сто тридцать четыре человека получили большие дозы, и за 25 лет из них умерло еще 20 человек, но по разным причинам, и далеко не все от онкологии. В тоже время смерть 28 человек – это очень много для атомной энергетики. Если брать общее число смертей в мире, связанных с атомной энергетикой, то насчитывается 60 умерших, и среди них наши 28 из-за ЧАЭС. Теперь посмотрим на японские события. Авария на четырех блоках АЭС “Фукусима-1” не привела к даже самым минимальным радиационным последствиям для населения, и никто не погиб из персонала АЭС из-за радиации. Доза радиационного облучения до 100 миллизиверт (млЗв) не несет никаких последствий для здоровья человека. Нигде на территории Японии люди не получили такие дозы. Среди персонала АЭС есть единичные случаи, порядка 17 человек, когда люди получили дозу более 100 млЗв, два человека превысили дозу в 250 мЗв, при этом аварийная норма, и на ЧАЭС, и на “Фукусиме” – 250 млЗв. У нас в свое время в Чернобыле тоже была аварийная доза в 100 млЗв, при ее превышении для продолжения работы нужно было получать разрешение директора; но здесь есть психологический момент – персонал на ЧАЭС не бегал за разрешением к директору, поскольку понимал, что нужно действовать. В Японии же для предотвращения взрывов тех же энергоблоков нужно было вентилировать контайнтмент, но как только персонал японской АЭС понимал, что приближается к получению дозы в 100 млЗв, он покидал опасную зону, несмотря на возможные негативные последствия их ухода для дальнейшего развития ситуации.

Крупнейшая авария на Чернобыльской станции произошла 26 апреля 1986 г. Взорвался четвертый энергоблок станции. В результате аварии на Чернобыльской АЭС территория в радиусе 30 км подверглась радиоактивному заражению. В результате аварии радиоактивному загрязнению только в России подверглась территория 19-ти субъектов с населением около 30 млн человек. Площадь территорий, загрязненных цезием-137, составила более 56 тысяч кв. км, на которых проживали около 3 млн человек.  ЧАЭС была остановлена 15 декабря 2000 г. в 13 часов 17 минут. Верховная Рада Украины утвердила программу вывода из эксплуатации Чернобыльской АЭС. Согласно программе, Чернобыльская АЭС будет полностью ликвидирована к 2065 г. На первом этапе, с 2010 до 2013 г., ядерное топливо будет изъято с АЭС и перемещено в долгосрочные хранилища.  С 2013 по 2022 гг. будет проходить консервация реакторных установок. С 2022 до 2045 г. эксперты будут ожидать снижения радиоактивности реакторных установок. За период с 2045 до 2065 гг. установки демонтируют, а место, на котором располагалась станция, – очистят.  Планируется, что в результате реализации программы объект “Укрытие” станет экологически безопасным.   Можно, конечно, обсуждать, правильно или нет, что они соблюдали строго аварийные пределы доз, даже когда они не представляли сколь либо значимого риска, но ведь в итоге никто из них не переоблучился, не получил высоких доз и не умер. Еще раз повторю – на японской АЭС не было ни одной смерти от радиационного воздействия в момент аварии, дозы облучения, полученные в дальнейшем специалистами-ликвидаторами, не превышают нормы. Поэтому катастрофой события на “Фукусиме” можно назвать только без учета реальных последствий.   Теперь о воздействии радиационных событий на природу. Давайте сразу же обозначим принципиальную вещь: когда мы говорим о влиянии на природу, то нужно понимать, что уровень радиационного воздействия, при котором проявляется негативное воздействие на флору и фауну, в 100 раз превышает уровень допустимого воздействия на человека. Поэтому нонсенсом и глупостью являются разговоры о воздействии радиации на природу там, где ее влияние на человека вообще не ощущается. Никаких уровней радиационного загрязнения, при которых будет проявлено хоть какое-то воздействие на природу, в Японии нет ни на суше, ни в океане. Конечно, какие-то локальные места загрязнения на территории страны на узкой полосе на северо-западе, но это очень небольшая территория, которую можно  привести в порядок. Что касается океана, то он сам по себе самый большой растворитель на планете, и те кажущиеся нам огромными объемы радиоактивной воды, сброшенные в свое время с АЭС в океанские воды, давно уже разбавились до уровней, не представляющих опасности ни для человека, ни для флоры и фауны.

Миф пятый: у атомной энергетики нет будущего, после аварии в Японии все страны мира стали отказываться от АЭС, и только Россия строит атомные станции, не прислушиваясь к мировому сообществу.   Реальность: Развитие атомной энергетики – насущная необходимость мировой экономики. Во-первых, крупные развивающиеся страны, испытывающие потребности в энергии, осознали, что решение проблемы надежного энергоснабжения на основе органических энергоносителей, нефти, газа, угля, не существует. Одни потребности Китая на рынке углеводородных ресурсов являются колоссальными. Именно поэтому развивающиеся страны пошли по пути эксплуатации атомной энергетики. Во-вторых, атомная энергетика – это экология. В США действует 100 энергоблоков АЭС, в Европе – 140, в одной только Франции 56 блоков. АЭС – это серьезный инструмент для сдерживания выбросов парниковых газов в атмосферу. При этом выбросы угольных станции, по официальным данным, приводят только в США ежегодно к смерти 26 тысяч человек, После аварии в Японии лишь Германия отказалась от своих АЭС, но поскольку она в окружении стран, эксплуатирующих “мирный атом”, то вынуждена будет покупать электроэнергию атомных станций своих соседей. Отказ Германии, как мы видим, не имеет никакого отношения к общемировому тренду. Ведущие страны мира разрабатывают реакторы четвертого поколения, в том числе с жидкометаллическими теплоносителями, и новые АЭС должны обеспечивать не только безопасность эксплуатации, но и не допускать сколь либо значимых радиационных выбросов в любой ситуации.

В строительстве каких атомных электростанций принимали участие российские специалисты. ЗАО “Атомстройэкспорт” (ЗАО АСЭ) – ведущая инжиниринговая компания Госкорпорации “Росатом” по строительству объектов ядерной энергетики за рубежом. Среди реализованных проектов: Тяньваньская АЭС (Китай), АЭС “Козлодуй” (Болгария), АЭС “Пакш” (Венгрия), АЭС “Темелин” и АЭС “Дукованы” (Чехия) и др.

Беседовал Андрей Резниченко, РИА “Новости”